

College W&M

Columbia U

General Atomics

Johns Hopkins U

Nova Photonics

Old Dominion U

New York U

Princeton U

Think Tank, Inc.

Purdue U

UC Davis

UC Irvine

U Colorado

U Maryland

U Rochester

U Wisconsin

U Washington

U Illinois

UCLA

UCSD

CompX

INL

LANL

LLNL

MIT

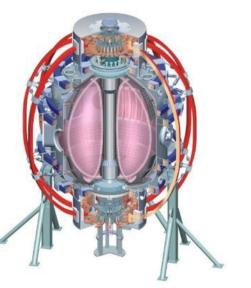
ORNL PPPL

PSI

SNL

Lodestar

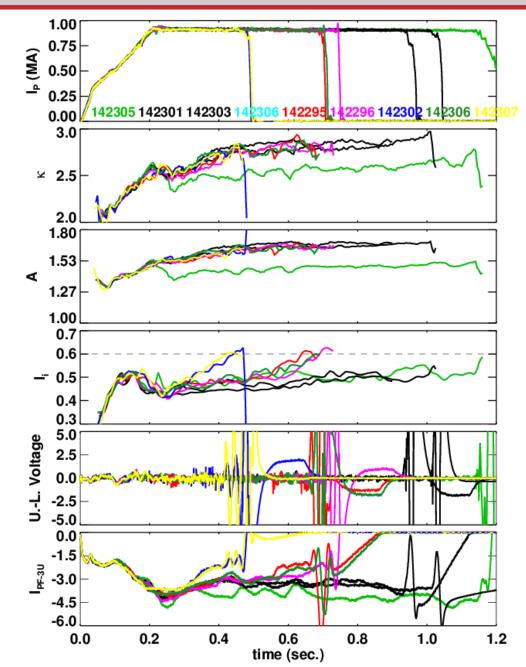
Colorado Sch Mines


Supported by

Development of Improved Vertical Position Control

S.P. Gerhardt, E. Kolemen

ASC Session, NSTX 2011/12 Research Forum Location Date



Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA, Frascati CEA, Cadarache **IPP, Jülich IPP, Garching** ASCR, Czech Rep **U** Quebec

XP in 2010 Showed that Vertical Position Control can be Lost at Higher Aspect Ratio

- 1 Fiducial (green) and 8 shots at higher aspect ratio.
 - Black cases vertically stable, the colored ones have VDEs.
- VDE is always triggered when l_i=0.6.
 - This is not a particularly high value.
 - Would preclude use of the scenario for many XPs.
 - Many upgrade scenarios with central NBCD have I_i>0.6
- Motivates improvements to the n=0 controller.

- Improve the detection of small vertical motion.
 - "dZ/dt Observer"
- Re-optimize vertical control gains with improved observer.

• If necessary, use RWM coils for vertical control.

Vertical Position Controller is a PD Controller Using Loop Voltages for dZ/dt Measurement

Proportional controller is simply the Isoflux shape control algorithm:

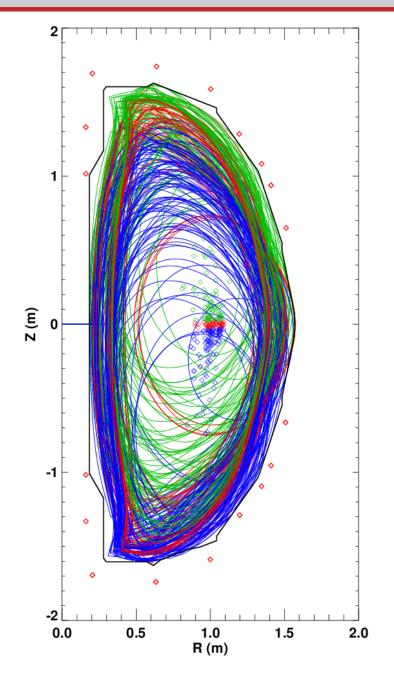
$$V_{PF-3,P} = M \times PID(\text{segment error})$$

• Fast derivative controller is based on the up-down loop voltage difference.

$$V_{PF-3,D} = D \times \left(\dot{\psi}_{Upper-Loop} - \dot{\psi}_{Lower-Loop} \right)$$

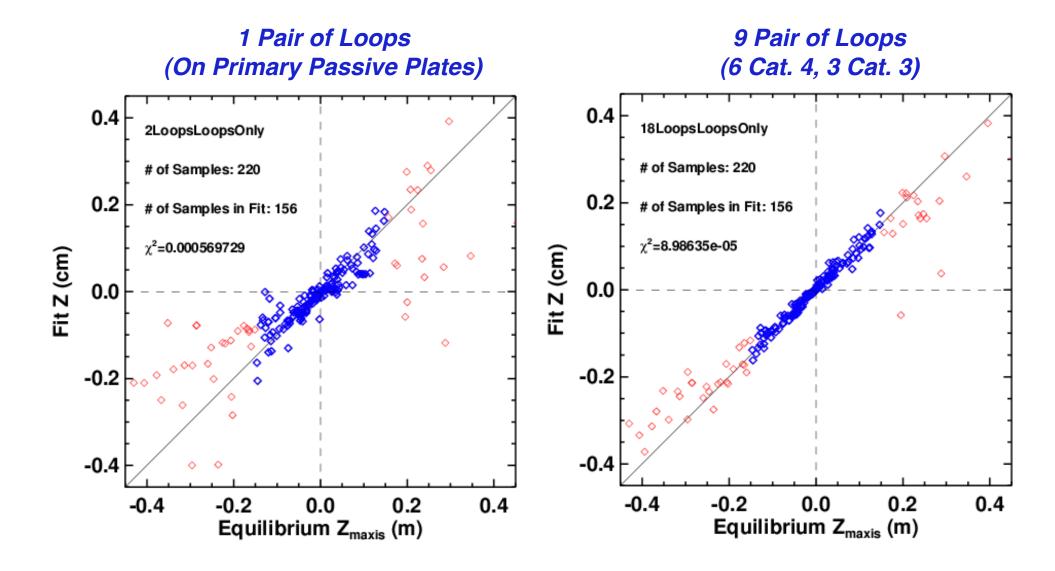
 The underlying assumption is that the plasma vertical position can be measured by only 2 loops:

$$I_P Z_P = C \times \left(\psi_{Upper-Loop} - \psi_{Lower-Loop} \right)$$


- Thesis: Using more loops will lead to a better estimation of the plasma position.
 - Eliminate n=1 pickup from random loop orientation problems.
 - More information for shapes that are distorted.

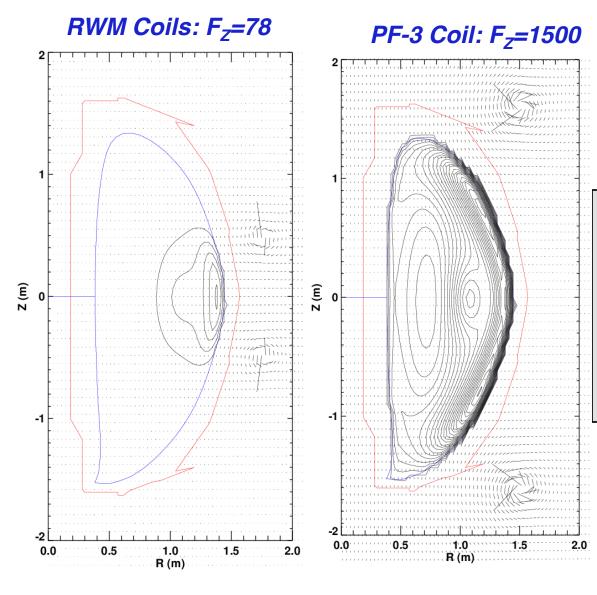
(I) NSTX

Numerical Tests Have Found That More Loops Are Better (I)


- Constructed ~220 NSTX equilibria.
 - Shift them off the axis, change the divertor coils, change I_P .
- Computed the flux at the various flux loop locations.
- Fit the magnetic axis location to a function:

$$I_P Z_P = \sum_{i=1}^{NumLoopPairs} C_i \times \left(\psi_{Upper-Loop,i} - \psi_{Lower-Loop,i} \right)$$

Numerical Tests Have Found That More Loops Are Better (II)


• Use only blue points in the fits $(|Z_{maxis}| < 15 \text{ cm})$

Vertical Position Control May Be Possible With the RWM Coils

RWM Coils make far less force for the same power supply current.

(ratio is not as bad for lower-elongation plasmas)

However....

1) SPA are very fast (to 3 kA in 1-2 msec)

2) RWM coil field may not couple as strongly to the passive plates.

Use this as a last resort if we have insufficient vertical control margin after other things are tried.

Run Plan

- Debugging: Compare PCS calculations to identical off-line versions.
- XMP (?): Test that system is correctly coupled to the PF-3 coils.
- Day 1: Optimize gains with PF-3 as actuator, new dZ/dt observer.
 - Reload vertically unstable target, A~1.75, κ =2.9
 - Use divertor gas injection to drive I_i up ?
- Day 2 (if necessary):
 - Repeat unstable scenario, using RWM coils for n=0 control. Do a derivative gain scan.

What if this does not work?

- Could replace the PD controller with something more sophisticated.
- More voltage capability on PF-3.
- Make PF-2 bi-polar for vertical control.
 - Or always run with a PF-2 positive bias (not-desirable!)

Backup

Meeting name – abbreviated presentation title, abbreviated author name (??/??/20??)

PCS Status

- dZ/dt Observer
 - Complete specification has been written.
 - Electronics for voltage difference amplifiers have been ordered.
 - Requested they be ready for the ISTP.
 - Have not started coding it in PCS.
- RWM coils for Z_{axis} control.
 - Specification has been written.
 - Will be part of the RWM proportional control algorithm.
 - Relies on the improved dZ/dt observer for the measurement.
 - Have not started on the PCS code yet.

